Shanghai ## Technical sheet | Material | Carbon steel | | | | | |-----------------|---|--|--|--|--| | Pipes- Ø | 32x1,5 | | | | | | Collectors - Ø | 32x1,5 | | | | | | Connections | 3x1/2 (air bleeding valve connection, included) | | | | | | Wall fixings | 3 | | | | | | Max pressure | 10 bar | | | | | | Max temperature | 90 °C | | | | | | Paint | epoxypolyester powder | | | | | | Packaging | cardboard box + styrofoam protections + | | | | | | | polyethylene foam sheet | | | | | **Standard equipment:** 1 kit wall fixing brackets - 1 air bleeding valve - 1 chromed cap for air bleeding valve ## White VOV09 | code | h
(mm) | width
(mm) | interaxis
(mm) | weight
(kg) | water
(lt) | ∆⊺50 °C
watt | ∆⊺ 30 °C
watt | ∆T 42,5 °C
watt | ∆T 60 °C
watt | Exponent n | |--------|-----------|---------------|-------------------|----------------|---------------|-----------------|-------------------------|---------------------------|-------------------------|------------| | 380228 | 1734 | 567 | 450 | 13,7 | 6,3 | 552 | 295 | 453 | 691 | 1,22881 | #### **Anthracite VOV12** | code | h
(mm) | width
(mm) | interaxis
(mm) | weight
(kg) | water
(lt) | ∆⊺ 50 °C
watt | ∆⊺ 30 °C
watt | ∆T 42,5 °C
watt | ∆T 60 °C
watt | Exponent n | |--------|-----------|---------------|-------------------|----------------|---------------|-------------------------|-------------------------|---------------------------|-------------------------|------------| | 380227 | 1734 | 567 | 450 | 13,7 | 6,3 | 552 | 295 | 453 | 691 | 1,22881 | Our radiators are tested in qualified laboratories according to EN-442 regulations which determine the ouput value by fixing the ΔT at 50 °C. ΔT is the difference between the average temperature of the water inside the radiator and the room temperature. The formula is: (((T_1+T_2)/2)- T_z). Ex.: ((75+65/2)-20)= 50 °C. For output values with a different ΔT use the following formula: $\phi_x = \phi_{\Delta \tau \lesssim 0}^* (\Delta T_x/50)^n$. See calculation example of the output at ΔT 60 °C of article 380228: 552*(60/50)¹²²⁸⁸¹= 691. Output values in kcal/h = watt x 0,85984. Output values in btu = watt x 3,412. #### KEY T_1 = supply temperature - T_2 = return temperature - T_3 = room temperature. ϕ_x = output to be calculated - $\phi_{\Delta\tau SO}$ = output at $\Delta\tau$ 50 °C (table) - $\Delta\tau_x$ = $\Delta\tau$ value to be calculated - °= exponent "n" (table).